title: Codeforces Round 920 (Div. 3) date: 2024-03-19 09:19:27 updated: 2024-03-19 09:19:27 categories:
告诉你一个正方形的四个顶点的坐标,问正方形的面积
记录最大和最小的 x 和 y,很好计算
#define int long long
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int mi = 1000, ma = -1000;
for (int i = 0; i < 4; ++i) {
int u, v;
cin >> u >> v;
mi = min(mi, v);
ma = max(ma, v);
}
cout << (ma - mi) * (ma - mi) << endl;
}
}
有两个 01
字符串,允许对第一个字符串进行如下操作
问最多操作几次能让两个字符串相同
多用第三个方法即可,统计 1 的数量即可
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n;
cin >> n;
string str1, str2;
str1.resize(n);
str2.resize(n);
cin >> str1 >> str2;
int cnt[2][2] = {};
for (int i = 0; i < n; ++i) {
if (str1[i] == str2[i]) continue;
++cnt[0][str1[i] - '0'];
++cnt[1][str2[i] - '0'];
}
cout << max(cnt[0][1], cnt[1][1]) << endl;
}
}
有一个手机,待机每小时要消耗 $a$ 电量,而每次开机关机则需要消耗 $b$ 电量,最开始有 $f$ 电量
问在固定的 $n$ 个发送信息任务是否能够完成
计算两次相邻的信息之间,选择待机还是选择关机即可
#define int long long
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n, f, a, b;
cin >> n >> f >> a >> b;
int last = 0;
for (int i = 0; i < n; ++i) {
int cur;
cin >> cur;
f -= min(b, a * (cur - last));
last = cur;
}
cout << (f > 0 ? "YES" : "NO") << endl;
}
}
有两个数组 $a, b$,允许从 $b$ 选择 $x$ 个值,组成和 $a$ 长度相同的字符串,使得和 $a$ 尽可能不一样
排序后,大的和小的匹配,小的和大的匹配,注意要同时开始匹配,选择两侧差值较大者
#define int long long
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n, m;
cin >> n >> m;
vector<int> a(n), b(m);
for (auto& i: a) cin >> i;
for (auto& i: b) cin >> i;
sort(a.begin(), a.end());
sort(b.begin(), b.end());
int l = 0, r = 0, ans = 0;
while (l + r < n) {
if (abs(a[l] - b[m - l - 1]) > abs(a[n - r - 1] - b[r])) {
ans += abs(a[l] - b[m - l - 1]);
++l;
} else {
ans += abs(a[n - r - 1] - b[r]);
++r;
}
}
cout << ans << endl;
}
}
有两个棋子在棋盘上,只允许向前、向左前、向右前移动,问是否可能发送吃的可能
每个棋子的可能到达的格子可以绘制出来,只需奥看最终的相遇那一行是否是有覆盖关系即可
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n, m, ax, ay, bx, by;
cin >> n >> m >> ax >> ay >> bx >> by;
if (bx <= ax) {
cout << "Draw" << endl;
continue;
}
int al = ay, ar = ay, bl = by, br = by;
const bool flag = (bx - ax) % 2;
while (ax < bx) {
al = max(1, al - 1);
ar = min(m, ar + 1);
++ax;
if (ax == bx) break;
bl = max(1, bl - 1);
br = min(m, br + 1);
--bx;
}
if (flag) cout << (al <= bl && ar >= br ? "Alice" : "Draw") << endl;
else cout << (bl <= al && br >= ar ? "Bob" : "Draw") << endl;
}
}
有一个数组,给出 $s, d, k$,计算 $\sum{i=0}^{k} (i + 1) \times a\{s+i \times d}$
分两种情况做,如果 $k$ 比较大,那么可以暴力,如果比较小,那么就通过前缀和进行优化计算
而前缀和则需要考虑间隔 $[1, sqrt(n)]$ 的每一种情况 $x$
每一种情况下需要计算 $s_i = s_{i-x} + a_i$ 和 $s_i = s_{i-x} + t \times a_i$
#define int long long
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n, q;
cin >> n >> q;
vector<int> data(n);
for (auto& i: data) cin >> i;
const int cap = min(static_cast<int>(sqrt(n)) + 1, n);
vector<vector<int>> a(cap), b(cap);
for (int i = 0; i < cap; ++i) {
a[i].resize(n, 0);
b[i].resize(n, 0);
for (int j = 0; j <= i; ++j) a[i][j] = b[i][j] = data[j];
for (int j = i + 1; j < n; ++j) {
a[i][j] = a[i][j - i - 1] + (j + i + 1) / (i + 1) * data[j];
b[i][j] = b[i][j - i - 1] + data[j];
}
}
for (int i = 0; i < q; ++i) {
int s, d, k;
cin >> s >> d >> k;
if (d <= cap) {
const int start = s - d, end = s + d * (k - 1), cp = (s - 1) / d;
const int as = a[d - 1][end - 1] - (start <= 0 ? 0 : a[d - 1][start - 1]), bs = cp * (b[d - 1][end - 1] - (start <= 0 ? 0 : b[d - 1][start - 1]));
cout << as - bs << ' ';
} else {
int ans = 0;
for (int j = 0; j < k; ++j)
ans += (j + 1) * data[s + j * d - 1];
cout << ans << ' ';
}
}
cout << endl;
}
}
可以在一个图上绘制固定形状的一个三角形,问最多能覆盖多少个目标点
也是前缀和,用斜向的前缀和即可
至于四种方向,可以考虑翻转图,而不是翻转形状
void solve() {
int _;
cin >> _;
for (int tc = 0; tc < _; ++tc) {
int n, m, k;
cin >> n >> m >> k;
vector<string> map(n);
for (auto& s: map) {
s.resize(m);
cin >> s;
}
vector<vector<int>> h(n), v(n), r(n);
for (auto& i: h) i.resize(m, 0);
for (auto& i: v) i.resize(m, 0);
for (auto& i: r) i.resize(m, 0);
auto cal = [&](vector<vector<bool>> &mp) {
for (int i = 0; i < n; ++i) {
h[i][0] = v[i][0] = r[i][0] = mp[i][0];
h[i][m - 1] = v[i][m - 1] = r[i][m - 1] = mp[i][m - 1];
}
for (int j = 0; j < m; ++j) {
h[0][j] = v[0][j] = r[0][j] = mp[0][j];
h[n - 1][j] = v[n - 1][j] = r[n - 1][j] = mp[n - 1][j];
}
for (int i = 0; i < n; ++i) for (int j = 1; j < m; ++j) h[i][j] = h[i][j - 1] + mp[i][j];
for (int j = 0; j < m; ++j) for (int i = 1; i < n; ++i) v[i][j] = v[i - 1][j] + mp[i][j];
for (int i = 1; i < n; ++i) for (int j = m - 2; j >= 0; --j) r[i][j] = r[i - 1][j + 1] + mp[i][j];
vector<vector<int>> ans(n);
for (auto& i: ans) i.resize(m, 0);
int res = 0;
// tl
ans[0][0] = 0;
for (int i = 0; i <= min(k, n - 1); ++i) for (int j = 0; j <= min(k - i, m - 1); ++j) ans[0][0] += mp[i][j];
for (int i = 0; i < n; ++i) {
if (i != 0) {
ans[i][0] = ans[i - 1][0];
ans[i][0] -= h[i - 1][min(k, m - 1)];
const int out = max(i + k - n + 1, 0);
if (out >= m) continue;
ans[i][0] += r[i + k - out][out] - (k + 1 >= m ? 0 : r[i - 1][k + 1]);
}
for (int j = 1; j < m; ++j) {
ans[i][j] = ans[i][j - 1];
ans[i][j] -= v[min(i + k, n - 1)][j - 1] - (i == 0 ? 0 : v[i - 1][j - 1]);
if (j + k >= m + n - 1 - i) continue;
const int out = max(i + k - n + 1, 0);
ans[i][j] += r[i + k - out][j + out] - (i == 0 || j + k + 1 >= m ? 0 : r[i - 1][j + k + 1]);
}
}
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res = max(res, ans[i][j]);
#ifdef ACM_LOCAL
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
int tmp = 0;
for (int a = 0; i + a < n && a <= k; ++a) for (int b = 0; b + a <= k && j + b < m; ++b) tmp += mp[i + a][j + b];
if (tmp != ans[i][j]) cerr << "tl: " << i << ' ' << j << ' ' << tmp << '-' << ans[i][j] << endl;
}
}
#endif
return res;
};
vector<vector<bool>> mp;
mp.resize(n);
for (auto &i: mp) i.resize(m);
int ans = 0;
// 1
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) mp[i][j] = map[i][j] == '#';
ans = max(cal(mp), ans);
// 2
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) mp[i][j] = map[i][m - j - 1] == '#';
ans = max(cal(mp), ans);
// 3
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) mp[i][j] = map[n - i - 1][j] == '#';
ans = max(cal(mp), ans);
// 4
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) mp[i][j] = map[n - i - 1][m - j - 1] == '#';
ans = max(cal(mp), ans);
cout << ans << endl;
}
}