仓库源文站点原文


layout: post title: 伟大的公式 categories:


2012-07-22 12:49:52

网上有一篇所谓的“世上最伟大的十个公式”, 先简要转载一下.

英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”, 最终榜上有名的十个公式既有无人不知的1+1=2, 又有著名的 E=mc^2; 既有简单的圆周公式, 又有复杂的欧拉公式……

从什么时候起我们开始厌恶数学?这些东西原本如此美丽, 如此精妙. 这个地球上有多少伟大的智慧曾耗尽一生, 才最终写下一个等号. 每当你解不开方程的时候, 不妨换一个角度想, 暂且放下对理科的厌恶和对考试的痛恨. 因为你正在见证的, 是科学的美丽与人类的尊严.

考究起来, 网上这个说法与真正的Top Ten Greatest Equations Ever存在差距:

  1. Maxwell's four equations describing how an electromagnetic field varies in space and time.

  2. Euler's equation of momentum-flow and force-density in fluid dynamics. $${\partial \boldsymbol{v} \over \partial t } + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -{\nabla P \over \rho} + \boldsymbol{f}$$

  3. Newton's Second Law (F=ma) - 'The rate of change of momentum of a body is equal to the resultant force acting on the body and is in the same direction'.

  4. Pythagoras's Theorum (a^2+b^2=c^2;) - In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  5. Schrödinger's equation describing the time-dependence of quantum mechanical systems.

  6. Boltzmann equation describing the statistical distribution of particles in a fluid. $${\partial f \over \partial t} +\boldsymbol{v} \cdot \nabla f + {\boldsymbol{p} \over m} \cdot \nabla f = ({\partial f \over \partial t})_{coll}$$

  7. Principle of Least Action (or Principle of stationary action) $$\delta \int_{t_1}^{t_2} L(q,\dot{q},t) dt=0$$

  8. De Broglie's equation - showing that the wavelength is inversely proportional to the momentum of a particle and that the frequency is directly proportional to the particle's kinetic energy.

  9. Fourier Transformation - an integral transform that re-expresses a function in terms of sinusoidal basis functions.

  10. Einstein's field equations for General Relativity. $$R{\mu\nu}-{1 \over 2}g{\mu\nu}R+g{\mu\nu}\Lambda={8\pi G \over c^4} T{\mu\nu}$$

也不知是不是原创者故意将几个不知名的公式替换了.