仓库源文站点原文


layout: post title: 晶格常数与晶格矢量的转换 categories:


已知晶格常数

$$\alg a&=|\vec a| \ b&=|\vec b| \ c&=|\vec c| \ \alpha&=\vec b \wedge \vec c=\arccos{\vec b \cdot \vec c \over bc} \ \beta&=\vec a \wedge \vec c=\arccos{\vec a \cdot \vec c \over ac} \ \gamma&=\vec a \wedge \vec b=\arccos{\vec a \cdot \vec b \over ab} \ealg$$

取x轴沿 $\vec a$ 方向, y轴处于 $\vec a \vec b$ 平面内, z轴处于 $\vec a \times \vec b$ 方向, 则晶格矢量

$$\vec a= (a_x, a_y, a_z)=a(1, 0, 0)$$

$$\vec b= (b_x, b_y, b_z)=b (\cos\gamma, \sin\gamma, 0)$$

$$\vec c= (c_x, c_y, c_z)=c (\cos\beta, {\cos\alpha-\cos\beta\cos\gamma \over \sin\gamma}, {\sqrt{1+2\cos\alpha\cos\beta\cos\gamma-\cos^2\alpha-\cos^2\beta-\cos^2\gamma} \over \sin\gamma})$$

设空间某点分数坐标为 $(u, v, w)$, 直角坐标为 $(x, y, z)$, 则

$$\begin{Bmatrix} x \ y \z \end{Bmatrix} = \mathbf A \begin{Bmatrix} u \ v \w \end{Bmatrix}=\begin{pmatrix} a_x & b_x & c_x \ a_y & b_y & c_y \ a_z & b_z & c_z \end{pmatrix} \begin{Bmatrix} u \ v \w \end{Bmatrix}$$

$$\begin{Bmatrix} u \ v \w \end{Bmatrix} = \mathbf A^{-1} \begin{Bmatrix} x \ y \x \end{Bmatrix}= \mathbf A^\text{T} \begin{Bmatrix} x \ y \x \end{Bmatrix}$$

证明

由C点向面OAB做垂线, 交点为D, 连接OD, OD将 $\gamma$ 为 $\gamma_1, \gamma_2$. 作DE垂直于OA, DF垂直于OB, 连接CE, CF, 则CE $\perp$ OA, CF $\perp$ OB.

设OD长度为 $\rho$, 则

$$\rho \cos \gamma_1=c \cos \beta =c_x$$

$$\rho \cos \gamma_2=c \cos \alpha$$

令 $k={c \over \rho}$, 有

$$\alg \cos \gamma&=\cos(\gamma_1+\gamma_2) \ &=\cos \gamma_1 \cos\gamma_2-\sin\gamma_1 \sin\gamma_2 \ &=k^2 \cos\alpha \cos\beta -\sqrt{1-k^2 \cos^2\alpha} \sqrt{1-k^2 \cos^2\beta} \ealg$$

可解得

$$k^2=c^2/\rho^2={ \sin^2\gamma \over \cos^2\alpha + \cos^2\beta-2\cos\alpha \cos\beta \cos\gamma }$$

$$\rho^2=c^2{ \cos^2\alpha + \cos^2\beta-2\cos\alpha \cos\beta \cos\gamma \over \sin^2\gamma }$$

求 $\vec c$ 的分量

x分量 $c_x=c \cos \beta$ 已知

y分量 $c_y = \rho \sin \gamma_1$

$$\alg c_y^2 &= \rho^2 \sin^2\gamma_1 \ &=\rho^2 (1-\cos^2 \gamma_1) \ &= \rho^2 (1-c^2 \cos^2\beta/\rho^2) \ &= \rho^2 -c^2 \cos^2\beta \ &= c^2 \left[ {\cos^2\alpha + \cos^2\beta-2\cos\alpha \cos\beta \cos\gamma \over \sin^2\gamma} -\cos^2\beta \right] \ &= c^2 {(\cos\alpha-\cos\beta\cos\gamma)^2 \over \sin^2\gamma } \ealg$$

若取 $\alpha \lt \beta$, 则开方取正号

$$c_y=c{ \cos\alpha-\cos\beta\cos\gamma \over \sin\gamma }$$

z分量

$$\begin{split} c_z^2 &=c^2-c_x^2-c_y^2 \ &=c^2 -c^2 \cos^2\beta - \rho^2 + c^2 \cos^2\beta \ &=c^2-\rho^2 \ &=c^2\left[ 1- {\cos^2\alpha+\cos^2\beta-2\cos\alpha \cos\beta \cos\gamma \over \sin^2\gamma} \right] \ &=c^2 {1-\cos^2\gamma-\cos^2\alpha-\cos^2\beta+2\cos\alpha \cos\beta \cos\gamma \over \sin^2\gamma} \end{split}$$

由上面所得公式, 我们亦可得到平行六面体的体积

$$\begin{split} V&=abc_z\sin\gamma \ &=abc\sqrt{1-\cos^2\gamma-\cos^2\alpha-\cos^2\beta+2\cos\alpha \cos\beta \cos\gamma} \ &=\begin{vmatrix} \vec a \cdot \vec a & \vec a \cdot \vec b & \vec a \cdot \vec c \ \vec b \cdot \vec a & \vec b \cdot \vec b & \vec b \cdot \vec c \ \vec c \cdot \vec a & \vec c \cdot \vec b & \vec c \cdot \vec c \end{vmatrix}^{1/2} \ &=\begin{vmatrix} a^2 & ab\cos\gamma & ac\cos\beta \ ab\cos\gamma & b^2 & bc\cos\alpha \ ac\cos\beta & bc\cos\alpha & c^2 \end{vmatrix}^{1/2} \end{split}$$

此式多有论述, 不赘述.