layout: post title: Hamaker方程 categories:
若粒子之间的van der Waals吸引势与距离的6次方成反比, Hamaker方程给出了两个宏观球形粒子之间的吸引能. 当粒子之间的吸引势取其他形式时, 可利用下式进行计算
$$E={-\p^2 q^2 \l \over z} \int_{z-R_2}^{z+R_2} [R2^2-(z-R)^2] dR \int{R-R_1}^{R+R_1} {R_1^2-(R-r)^2 \over r^{n-1}} dr$$
令 $\a=R_1, \b=R_2, \k={-\p^2 q^2 \l \over z}$
$$\begin{align} E &=\k \int{z-\b}^{z+\b} [\b^2-(z-R)^2] dR \int{R-\a}^{R+\a} {\a^2-(R-r)^2 \over r^{n-1}} dr \ &= \k \int_{z-\b}^{z+\b} [\b^2-(z-R)^2] I_n(R) dR \end{align}$$
$$\alg In=\int{R-\a}^{R+\a} {\a^2-(R-r)^2 \over r^{n-1}} dr={R^2-\a^2 \over n-2} {1 \over r^{n-2}} -{2R \over n-3} {1 \over r^{n-3}} +{1 \over n-4} {1 \over r^{n-4}} (n \ge 4) \ealg$$
当 $n \le 4$ 时, 此积分需要单独考虑.
$$\alg I_1 &= {4 \over 3} \a^3 \ E_1 &= \k {4 \over 3} \a^3 {4 \over 3} \b^3 = - {Q_1 Q_2 \l \over z} \ealg$$
这种情形下, 两个球形粒子之间的势能与将其视为处于中心的质点是一样的. 引力, 静电相互作用就属于这种情况, 所有我们可以将星球与荷电小球视为质点, 利用万有引力定律或是库伦定律计算势能.
$$\alg I_2 &= 2 \a R +(R^2-\a^2)\ln{R-\a \over R+\a} \ E2 /\k &= \int{z-\b}^{z+\b} 2 \a R[\b^2-(z-R)^2] dR + \int{z-\b}^{z+\b} (R^2-\a^2)[\b^2-(z-R)^2] \ln{R-\a \over R+\a} dR \ &= {8 \over 3} \a \b^3 z + \int{z-\b}^{z+\b} \left[-R^4 + 2zR^3 + (\a^2+\b^2-z^2)R^2 - 2z\a^2R + \a^2(z^2-\b^2)\right] \ln{R-\a \over R+\a} dR \ \ealg$$
相关的积分公式如下
$$\alg \int R^4 \ln{R-a \over R+a} dR &= {1 \over 10} ( -2 a^5 \ln(R-a)-a (2 a^4 \ln(a+R)+2 a^2 R^2+R^4)+2 R^5 \ln{R-a \over R+a} ) \ &= {1 \over 10} \left[ -a R^4 -2 a^3 R^2 - 2 a^5 \ln(R^2-a^2) + 2 R^5 \ln{R-a \over R+a} \right] \ \int R^3 \ln{R-a \over R+a} dR &= {1 \over 12} ( -3 a^4 \ln(R-a)+3 a^4 \ln(a+R)-6 a^3 R+3 R^4 \ln{R-a \over R+a}-2 a R^3 ) \ &= {1 \over 12} \left[ -2 a R^3 - 6 a^3 R + 3(R^4-a^4)\ln{R-a \over R+a} \right] \ \int R^2 \ln{R-a \over R+a} dR &= {1 \over 3 } ( -a^3 \ln(R-a) -a (a^2 \ln(R+a)+R^2)+R^3 \ln{R-a \over R+a} \ &= {1 \over 3 } \left[ -a R^2 - a^3 \ln(R^2-a^2) + R^3 \ln{R-a \over R+a} \right] \ \int R^1 \ln{R-a \over R+a} dR &= {1 \over 2 } ( -a^2 \ln(R-a) +R^2 \ln{R-a \over R+a}+a (a \ln(a+R)-2 R) ) \ &= {1 \over 2 } \left[ -2 a R + (R^2-a^2) \ln{R-a \over R+a} \right] \ \int \ln{R-a \over R+a} dR &= -a \ln(R-a)+R \ln{R-a \over R+a} -a \ln(a+R) \ &= -a \ln(R^2-a^2) +R \ln{R-a \over R+a} \ealg$$
$$\alg & \int (A_4 R^4+A_3 R^3 + A_2 R^2 +A_1 R +A_0) \ln{R-a \over R+a} dR \ = -&{A_4 \over 10} a R^4 -{A_3 \over 6} a R^3 -({A_4 \over 5} a^2+{A_2 \over 3}) a R^2 -({A_3 \over 2} a^2+A_1) a R \ -& ({A_4 \over 5}a^4+{A_2 \over 3}a^2+A_0) a \ln(R^2-a^2) \ +& [{A_4 \over 5}R^5 +{A_2 \over 3}R^3 +A_0 R +{A_3 \over 4}(R^4-a^4) +{A_1 \over 2}(R^2-a^2) ] \ln{R-a \over R+a} \ealg$$
下面的eigenmath
代码用于计算定积分
最终结果
$$\alg E_2 /\k &= {8 \over 3} \a \b^3 z + {2 \over 15} \a \b z[z^2+11\a^2-9\b^2] \ &+ {2 \over 15} \a^3 [\a^2 +5(z^2-\b^2)] \ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \ &+ {2 \over 15} \b^3 [\b^2 +5(z^2-\a^2)] \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \ &+ {z \over 30} [-z^4+10(\a^2+\b^2)z^2 +15(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ &= {2 \over 15} \a \b z[z^2+11(\a^2+\b^2)] \ &+ {2 \over 15} \a^3 [\a^2 +5(z^2-\b^2)] \ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \ &+ {2 \over 15} \b^3 [\b^2 +5(z^2-\a^2)] \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \ &+ {z \over 30} [-z^4+10(\a^2+\b^2)z^2 +15(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ \ealg$$
$$\alg I_3 &= 2 R \ln{R+\a \over R-\a} -4\a \ E2 /\k &= \int{z-\b}^{z+\b} -4 \a [\b^2-(z-R)^2] dR + \int{z-\b}^{z+\b} 2R [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \ &= -{16 \over 3} \a \b^3 + \int{z-\b}^{z+\b} [2R^3-4zR^2+2(z^2-\b^2)R] \ln{R-\a \over R+a} dR \ &= -{2 \over 3} \a\b[z^2+3(\a^2+\b^2)] \ &- {4 \over 3}\a^3 z\ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \ &- {4 \over 3}\b^3 z\ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \ &+ {1 \over 6}[z^4-6(\a^2+\b^2)z^2 -3(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ealg$$
$$\alg I_4 &= {2 \a R \over R^2-\a^2} + \ln{R-\a \over R+\a} \ E2 /\k &= \int{z-\b}^{z+\b} {2 \a R \over R^2-\a^2} [\b^2-(z-R)^2] dR + \int{z-\b}^{z+\b} [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \ &= \int{z-\b}^{z+\b} {2 \a\b^2 R \over R^2-\a^2} dR - \int{z-\b}^{z+\b} {2 \a R (z-R)^2 \over R^2-\a^2} dR + \int{z-\b}^{z+\b} [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \ &= 4\a\b z + \a(\b^2-\a^2-z^2) \ln{(z+\b)^2-\a^2 \over (z-\b)^2-\a^2} -2 \a^2 z \ln{z^2-(\a+\b)^2 \over z^2-(\a-\b)^2} \ & -{8 \over 3} \a\b z + \a(z^2+{\a^2 \over 3}-\b^2) \ln{(z+\b)^2-\a^2 \over (z-\b)^2-\a^2} +z(-{z^2 \over 3}+\b^2-\a^2) \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2 } +{2 \over 3} \b^2 \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \ &= {4 \over 3} \a \b z
$$\alg E_2 /\k &= {2 \over 3} \a\b +{z^2-\a^2-\b^2 \over 3} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ealg$$
$$\alg E_2 /\k &={z \over 6} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} -{2 \a\b z \over 3} {\a^2+\b^2-z^2 \over [\a^2-(z-\b)^2][\a^2-(z+\b)^2]} \ &= {z \over 6} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} + {\a \b z \over 3}[ {1 \over z^2-(\a+\b)^2} + {1 \over z^2-(\a-\b)^2} ] \ealg$$
下面的 matlab
代码可以帮助推导 $n>4$ 时的结果
可见, 即便对于均匀分布的球形粒子, 其作用力的一般形式也很复杂, 但综合看起来, 表达式中都含有对数形式, 这可能预示着在构造势函数时要考虑对数形式的函数, 但常见的势能函数中却很少使用这种形式.
推广一下, 当粒子之间的相互作用为指数势 $e^{-nr}$ 时, 得到的结果更简单,
$$\alg I &= \int_{R-\a}^{R+\a} [\a^2-(R-r)^2] r e^{-n r} dr \ &= 2 e^{-n (\a+R)} { n (\a (n (\a+R)+3)+R)-e^{2n\a} ((n (\a(n\a-nR-3)+R)+3)+3) \over n^4} \ &= A e^{-n R} (BR-C) \ E2 /\k &=\int{z-\b}^{z+\b} [\b^2-(z-R)^2] I dR \ &= e^{-n(z+\b)} \left[ 2 { 3 \b B - C + z B + (C+ 3\b B - z B) e^{2n\b} \over n^3 }
其中
$A= {2\over n^4} e^{-n\a}, B=n[1+n\a+(n\a-1)e^{2n\a}], C=n^2\a^2+3n\a-e^{2n\a}(n^2\a^2-3n\a+3n+3)$