仓库源文站点原文

Dynamic Programming Problems

{% raw %} $$ \boxed{@} % Color % \newcommand\c[2]{\textcolor{#1}{#2}} \newcommand\r[1]{\textcolor{red}{#1}} \newcommand\g[1]{\textcolor{green}{#1}} \newcommand\b[1]{\textcolor{blue}{#1}} \newcommand\red[1]{\textcolor{red}{#1}} \newcommand\blue[1]{\textcolor{blue}{#1}} \newcommand\green[1]{\textcolor{green}{#1}} \newcommand\black[1]{\textcolor{black}{#1}} \newcommand\white[1]{\textcolor{white}{#1}} \newcommand\cyan[1]{\textcolor{cyan}{#1}} \newcommand\magenta[1]{\textcolor{magenta}{#1}} \newcommand\yellow[1]{\textcolor{yellow}{#1}} \newcommand\orange[1]{\textcolor{orange}{#1}} \newcommand\lime[1]{\textcolor{lime}{#1}} \newcommand\pink[1]{\textcolor{pink}{#1}} \newcommand\darkgray[1]{\textcolor{darkgray}{#1}} \newcommand\gray[1]{\textcolor{gray}{#1}} \newcommand\lightgray[1]{\textcolor{lightgray}{#1}} \newcommand\brown[1]{\textcolor{brown}{#1}} \newcommand\olive[1]{\textcolor{olive}{#1}} \newcommand\purple[1]{\textcolor{purple}{#1}} \newcommand\teal[1]{\textcolor{teal}{#1}} \newcommand\violet[1]{\textcolor{violet}{#1}} \newcommand\hotpink[1]{\textcolor{hotpink}{#1}} \newcommand\blueviolet[1]{\textcolor{blueviolet}{#1}} \newcommand\navyblue[1]{\textcolor{navyblue}{#1}} \newcommand\peach[1]{\textcolor{Peach}{#1}} \newcommand\orangeRed[1]{\textcolor{OrangeRed}{#1}} \newcommand\salmon[1]{\textcolor{Salmon}{#1}} \newcommand\skyblue[1]{\textcolor{SkyBlue}{#1}} \newcommand\springreen[1]{\textcolor{SpringGreen}{#1}} \newcommand\aqua[1]{\textcolor{aqua}{#1}} \newcommand\navy[1]{\textcolor{navy}{#1}} \newcommand\silver[1]{\textcolor{silver}{#1}} \newcommand\fuchsia[1]{\textcolor{fuchsia}{#1}} \newcommand\maroon[1]{\textcolor{maroon}{#1}} \definecolor{luo}{RGB}{102,204,255} \definecolor{miku}{RGB}{57,197,187} \newcommand\luo[1]{\textcolor{luo}{#1}} \newcommand\miku[1]{\textcolor{miku}{#1}}

% Typography % \newcommand\a[1]{\begin{aligned}#1\end{aligned}} \newcommand\t[1]{\text{#1}} \newcommand\lb[1]{\left{\begin{aligned} #1 \end{aligned}\right.} \newcommand\rb[1]{\left.\begin{aligned} #1 \end{aligned}\right}} \newcommand\env[2]{\begin{#1}#2\end{#1}}

% Misc % \newcommand\s[1]{{#1}} \newcommand\qed{\quad\square} \newcommand\define{\dot{=}} \newcommand\then{\implies} \newcommand\rounddown[1]{\lfloor{#1}\rfloor} \newcommand\roundup[1]{\lceil{#1}\rceil} \newcommand\graph[4]{#1 = (#2, #3) \quad |#2| = #4} \newcommand\G{G = (V, E) \quad |V| = n} \newcommand\so{\therefore} \newcommand\comment[1]{\quad\text{(#1)}} \newcommand\note[1]{\quad\text{(#1)}} \newcommand\bt[1]{\boxed{\text{#1}}} \newcommand\max[1]{\textbf{ max } {#1} } \newcommand\min[1]{\textbf{ min } {#1} } \newcommand\IF{\textbf{ IF }} \newcommand\if{\textbf{ if }} \newcommand\IS{\textbf{ IS }} \newcommand\is{\textbf{ is }} \newcommand\but{\textbf{ but }} \newcommand\however{\textbf{ however }} \newcommand\AND{\textbf{ AND }} \newcommand\OR{\textbf{ OR }} \newcommand\NOT{\textbf{ NOT }} \newcommand\THEN{\textbf{ THEN }} \newcommand\IN{\textbf{ IN }} \newcommand\NOTIN{\textbf{ NOT-IN }} \newcommand\assume{\textbf{ Assuming that: }} \newcommand\contradictory{\textbf{ Thus lead to contradiction }} \newcommand\proof{\textbf{Proof: }} \newcommand\st{\text{ such that }} \newcommand\hold{\text{ holds }} \newcommand\lhs{\text{ LHS }} \newcommand\rhs{\text{ RHS }} \newcommand\wlg{\text{ Without loss of generality }} \newcommand\nb{\text{ nota bene }} \newcommand\analogously{\text{ analogously }} \newcommand\viceversa{\textbf{ viceversa }} \newcommand\let{\textbf{ let }} \newcommand\as{\textbf{ as }} \newcommand\for{\textbf{ As for }} \newcommand\select{\textbf{ SELECT }} \newcommand\m[1]{\mathit{#1}} \newcommand+[1]{\mathcal{#1}} \newcommand\warnning[1]{\colorbox{Blue}{\textcolor{Yellow}{#1}}} \newcommand\error[1]{\colorbox{Black}{\textcolor{White}{#1}}} $$

{% endraw %}

Multiple-Knapsack Problem

Description

設有 n 種不同面值的硬幣,各硬幣的面值存於數組 T[1:n]中。現要用這些面值的硬 幣來找錢。可以使用的各種面值的硬幣個數存於數組 Coins[1:n]中。 對任意錢數 0≤m≤20001,設計一個用最少硬幣找錢 m 的方法。

Input

由文件 input.txt 提供輸入數據,文件的第一行中只有 1 個整數給出n 的值,第 2 行起每 行 2 個數,分別是 T[j]和 Coins[j]。最後 1 行是要找的錢數 m。

Output

程序運行結束時,將計算出的最少硬幣數輸出到文件 output.txt 中。問題無解時輸出-1。

Sample

輸入文件示例

input.txt

3 1 3 2 3 5 3 18

輸出文件示例

output.txt

5

Analysis

Analyse the Dimensions & Establish the Recursive Equation

classDiagram
class Knapsack {
 +capacity
}

class Item {
 +value
 +weight
 +amount
}

首先,分析出題目中的 對象 (Object) 所涉及到的 屬性 (Attribute) 有哪些。

我們可以得到:

所以,我們可以得到3個 數據維度 (Dimension)硬幣的面值硬幣的數量需要湊的零錢

硬幣的數量 應該算 2個維度,加起來總共 4個維度

並且,我們可以定義遞推關系的值所需的最少硬幣數

這是因為 所需的最少硬幣數題目所需求的解

一般直接將 遞推關系的值 定義為 題目所需要求解的值,然後進行 劃分子問題

這樣等到 遞推方程的值計算完成,我們就可以 直接得到 問題的解


現在,我們不妨考慮一下,在最終湊齊零錢之前發生了什麽?

最後一步 (The Final Step) ,我們會將某種面值的硬幣放入k枚,然後滿足目標容量

n.b. 這裏如果認為:最後一步 會將 某種面值的硬幣 放入1枚 也可以。

但實際上,某種面值的硬幣 可以 一次性 地放入 多枚,並且效果 等價於

分多次在不同步 放入 該種硬幣1枚

因此,我們可以立即得出下面的遞推方程。 $$ \boxed{\t{Just take the final step into consideration}} \ dp[capacity][type][amount] = \lb{ & dp[capacity \r{- (k * values[type])}][type-1][amount \r{+ k}] + \g{k},&(\t{use coins}) \ & dp[capacity][type-1][amount],&(\t{don't use coins}) } $$


Compress the Recursive Equation

到此,我們已經得到了遞推方程,但該方程是4維的,時間復雜度 可能會較大。

後面我們會對比 4維解法2維解法性能差異

問題規模 變得 稍微大一些 的時候, 4維解法時間復雜度 將無法在 可接受的時間 內完成求解。

接下來我們可以考慮,能否壓縮 (Compress) 某些維度來達到降維優化的效果。

實際上,該 遞推方程數量 (amount)維度存有 冗余的信息


關於每種硬幣的數量限製,不妨考慮:

如果每種硬幣都是無限的,那麽我們很確信,capacity較大的問題的最優解capacity較小的問題的最優解組成

因為每種硬幣無限的,我們只需要簡單地把capacity較小的問題的找零方案進行組合即可。

但是,如果每種硬幣都是有限的,如何知道capacity較大的問題的最優解是否可以 直接capacity較小的問題的最優解組合得到,而且 不違反每種硬幣的數量限製

換句話說:如果我們需要湊齊500元,而湊齊500元的最優解湊齊200元的最優解湊齊300元的最優解組合得到。假設,湊齊200元的最優解湊齊500元的最優解都用到了5元硬幣,則我們如何確保所使用的5元硬幣的總量符合數量限製

這個問題其實依賴於我們的計算順序湊齊200元的最優解湊齊300元的最優解並不是獨立地被計算出來的

我們會在湊齊200元的最優解基礎上 進行計算湊齊300元的最優解,也就是從capacity較小的問題開始計算。

同時,保證任何時候的湊零錢方式都符合 每種硬幣的數量限製

也就是說,我們是通過在capacity較小的問題基礎 (Base)之上,動態地 計算 capacity較大的問題的最優解

換句話說,如果我們在 capacity較小的問題基礎 之上,求解 capacity較大的問題最優解

那麽違反 數量限製的解 本質上就是 非法解,並不是 合法解,更談不上 最優解

這使得處理 數量限製的約束非常容易,我們需要做的僅僅是 在子問題的基礎之上求解原問題

即要求我們滿足 最優子結構 (Optimal Substructure) 性質


關於每種硬幣的數量限製,還有一個重要的性質,那就是湊硬幣的順序是可交換的

比如說:

$$ \a{ 50 &= 30 + 10 + 10 \ &= 10 + 30 + 10 \ &= 10 + 10 + 30 } $$ 也就是同樣面值的固定數量的硬幣,按 任意順序 放入,最終的 效果 是等價的。

整數的加法可交換的

那麽,也就是說:如果我們要求湊齊50元硬幣的最優解,而我們 擁有一些10元硬幣

則我們無需考慮到底要按照什麽順序放入這些10元硬幣,而僅僅需要考慮,到底一次性要放多少枚10元硬幣才可以得到湊齊50元硬幣的最優解

因此,我們實際上利用 可交換性可以壓縮amount維度

由於對於 某種硬幣來說, 分多步放入共k枚在1步就一次性放入k枚效果等價的

那麽我們不妨就可以 依次考慮每種類型的硬幣,並 確定一次性要放多少枚該種硬幣

在已知正在考慮的硬幣類型當前需要湊齊的金額時,我們可以很容易地得出 當前類型的硬幣的數量上下界

然後依次考慮 k的所有可能取值,找出 原問題的最優解

如果沒有這樣壓縮,則我們要為amount維度的每種可能的來源方式做考慮:

如果沒有 可交換性的話,我們就需要為 硬幣數量的所有可能來源做考慮。

如 5枚 = 0+5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0


因而,我們可以得到 壓縮後的遞推方程。 $$ \boxed{\t{Just take the final step into consideration}} \ dp[capacity][type] = \lb{ &dp[capacity \r{- (k * values[type])}][type-1]\g{+ k},&(\t{use coins of the current type}) \ &dp[capacity][type-1],&(\t{don't use coins of the current type}) } $$

n.b. 當我們集中起來一次性考慮每種面額要放多少枚硬幣時,我們將非常容易地實現對每種面值的硬幣的數量的限製(只需要通過簡單地取定當前面值的硬幣循環下限循環上限即可)

同時這也意味著,每種硬幣的數量是特定的每種硬幣的數量是無限的這兩種問題本質上是相同的。

Solution

Iterative Method

Diagram
Expected  Input: [3, 2 3, 3 3, 6 1, 12]
Expected Output: [3]
item\capacity 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567
1 0 1061109567 1 1061109567 2 1061109567 3 1061109567 1061109567 1061109567 1061109567 1061109567 1061109567
2 0 1061109567 1 1 2 2 2 1061109567 3 3 1061109567 4 1061109567
3 0 1061109567 1 1 2 xxxxxxxxxx -----------------------------------------------------Current Case: MODE1.in & MODE1.outExpected Input: [10, Omit the remaining 10 line(s)...]Expected Output: [1, 5]Your     Output: [1, 5]Time Cost: 0.045200 ms (45200 ns)Accepted-----------------------------------------------------Current Case: MODE10.in & MODE10.outExpected Input: [1234567, Omit the remaining 1234567 line(s)...]Expected Output: [47527, 38]Your     Output: [47527, 38]Time Cost: 104.330000 ms (104330000 ns)Accepted-----------------------------------------------------Current Case: MODE11.in & MODE11.outExpected Input: [10, Omit the remaining 10 line(s)...]Expected Output: [1, 6]Your     Output: [1, 6]Time Cost: 0.001100 ms (1100 ns)Accepted-----------------------------------------------------Current Case: MODE12.in & MODE12.outExpected Input: [10, Omit the remaining 10 line(s)...]Expected Output: [2, 5]Your     Output: [2, 5]Time Cost: 0.001000 ms (1000 ns)Accepted-----------------------------------------------------Current Case: MODE13.in & MODE13.outExpected Input: [10, Omit the remaining 10 line(s)...]Expected Output: [2, 4]Your     Output: [2, 4]Time Cost: 0.000901 ms (901 ns)Accepted-----------------------------------------------------Current Case: MODE14.in & MODE14.outExpected Input: [10, Omit the remaining 10 line(s)...]Expected Output: [2, 4]Your     Output: [2, 4]Time Cost: 0.001200 ms (1200 ns)Accepted-----------------------------------------------------Current Case: MODE15.in & MODE15.outExpected Input: [10, Omit the remaining 9 line(s)...]Expected Output: [3, 4]Your     Output: [3, 4]Time Cost: 0.001101 ms (1101 ns)Accepted-----------------------------------------------------Current Case: MODE2.in & MODE2.outExpected Input: [50, Omit the remaining 50 line(s)...]Expected Output: [3, 8]Your     Output: [3, 8]Time Cost: 0.002099 ms (2099 ns)Accepted-----------------------------------------------------Current Case: MODE3.in & MODE3.outExpected Input: [100, Omit the remaining 100 line(s)...]Expected Output: [28, 9]Your     Output: [28, 9]Time Cost: 0.004400 ms (4400 ns)Accepted-----------------------------------------------------Current Case: MODE4.in & MODE4.outExpected Input: [500, Omit the remaining 500 line(s)...]Expected Output: [17, 8]Your     Output: [29, 8]Time Cost: 0.029600 ms (29600 ns)Wrong Answer.-----------------------------------------------------Current Case: MODE5.in & MODE5.outExpected Input: [10000, Omit the remaining 10000 line(s)...]Expected Output: [152, 11]Your     Output: [152, 11]Time Cost: 0.564300 ms (564300 ns)Accepted-----------------------------------------------------Current Case: MODE6.in & MODE6.outExpected Input: [50000, Omit the remaining 50000 line(s)...]Expected Output: [1507, 11]Your     Output: [1507, 11]Time Cost: 3.741200 ms (3741200 ns)Accepted-----------------------------------------------------Current Case: MODE7.in & MODE7.outExpected Input: [500000, Omit the remaining 500000 line(s)...]Expected Output: [62872, 23]Your     Output: [62872, 23]Time Cost: 37.026301 ms (37026301 ns)Accepted-----------------------------------------------------Current Case: MODE8.in & MODE8.outExpected Input: [1000000, Omit the remaining 1000000 line(s)...]Expected Output: [15875, 34]Your     Output: [15875, 34]Time Cost: 71.459100 ms (71459100 ns)Accepted-----------------------------------------------------Current Case: MODE9.in & MODE9.outExpected Input: [1234567, Omit the remaining 1234567 line(s)...]Expected Output: [44678, 42]Your     Output: [44678, 42]Time Cost: 83.852201 ms (83852201 ns)Accepted-----------------------------------------------------Result Statistics: √ √ √ √ √ √ √ √ √ × √ √ √ √ √ yaml 1 1061109567 2 2 3 3 3
Source
    public static int solve(int[] values, int[] amounts, int capacity) {
        // define dp array
        int[][] dp = new int[values.length + 1][capacity + 1];

        // init
        for (int i = 0; i <= values.length; i++) {
            dp[i][0] = 0;
        }
        for (int j = 1; j <= capacity; j++) {
            dp[0][j] = 0x3f3f3f3f;
        }

        // only use the first i coins
        for (int i = 1; i <= values.length; i++) {
            int value = values[i - 1];
            // to satisfy j capacity
            for (int j = 1; j <= capacity; j++) {
                // how many coins of this type should be used ?
                for (int k = 0; k <= j / value && k <= amounts[i - 1]; k++) {
                    dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - k * value] + k);
                }
            }
        }

        int ans = dp[values.length][capacity];
        return ans == 0x3f3f3f3f ? -1 : ans;
    }
Benchmark
-----------------------------------------------------
Current Case: COINS0.in & COINS0.out
Expected  Input: [10, 1 0, 2 12, 5 180, 10 0, 20 109, 50 126, 100 192, 200 107, 500 47, 1000 20, 14758]
Expected Output: [21]
Your     Output: [21]
Time Cost: 25.284600 ms (25284600 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS1.in & COINS1.out
Expected  Input: [10, 1 0, 2 12, 5 180, 10 0, 20 109, 50 126, 100 192, 200 107, 500 47, 1000 20, 14758]
Expected Output: [21]
Your     Output: [21]
Time Cost: 16.951400 ms (16951400 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS2.in & COINS2.out
Expected  Input: [10, 1 0, 2 45, 5 0, 10 148, 20 145, 50 136, 100 181, 200 17, 500 172, 1000 152, 16834]
Expected Output: [23]
Your     Output: [23]
Time Cost: 13.734800 ms (13734800 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS3.in & COINS3.out
Expected  Input: [10, 1 0, 2 22, 5 0, 10 27, 20 52, 50 192, 100 164, 200 110, 500 62, 1000 98, 17397]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 10.814700 ms (10814700 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS4.in & COINS4.out
Expected  Input: [10, 1 0, 2 99, 5 173, 10 11, 20 54, 50 101, 100 6, 200 44, 500 15, 1000 126, 12810]
Expected Output: [16]
Your     Output: [16]
Time Cost: 8.838500 ms (8838500 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS5.in & COINS5.out
Expected  Input: [10, 1 0, 2 133, 5 6, 10 137, 20 196, 50 198, 100 176, 200 0, 500 168, 1000 94, 2253]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 1.159000 ms (1159000 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS6.in & COINS6.out
Expected  Input: [10, 1 0, 2 0, 5 3, 10 131, 20 24, 50 78, 100 66, 200 84, 500 147, 1000 152, 16423]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 8.171400 ms (8171400 ns)
Accepted.
-----------------------------------------------------
Result Statistics: √ √ √ √ √ √ √

Recursive Method (2-Dimension)

Diagram
Expected  Input: [3, 2 3, 3 3, 6 1, 12]
Expected Output: [3]
graph TD;
root((root)) --#1, 0 * 6--> 47c306e5((12))
47c306e5 --#2, 0 * 3--> 1c2ac852((12))
1c2ac852 --#3, 0 * 2--> a6e0b278((12))
1c2ac852 --#4, 1 * 2--> d03ca462((10))
1c2ac852 --#5, 2 * 2--> 91c93566((8))
1c2ac852 --#6, 3 * 2--> 4180836e((6))
style 4180836e fill: lightgreen,stroke: #333,stroke-width: 4px
47c306e5 --#7, 1 * 3--> 5ecc1041((9))
5ecc1041 --#8, 0 * 2--> b759c285((9))
5ecc1041 --#9, 1 * 2--> 01ecf723((7))
5ecc1041 --#10, 2 * 2--> a3105e86((5))
5ecc1041 --#11, 3 * 2--> 25c25e57((3))
style 25c25e57 fill: lightgreen,stroke: #333,stroke-width: 4px
47c306e5 --#12, 2 * 3--> be869faa((6))
style be869faa fill: lightgreen,stroke: #333,stroke-width: 4px
be869faa --#13, 0 * 2--> 3314f76a((6))
style 3314f76a fill: lightgray,stroke: #333,stroke-width: 4px
be869faa --#14, 1 * 2--> e07a5826((4))
be869faa --#15, 2 * 2--> bdcf5e09((2))
be869faa --#16, 3 * 2--> b6de7abb((0))
style b6de7abb fill: lightgreen,stroke: #333,stroke-width: 4px
47c306e5 --#17, 3 * 3--> 4fd2a78a((3))
style 4fd2a78a fill: lightgreen,stroke: #333,stroke-width: 4px
4fd2a78a --#18, 0 * 2--> 24309338((3))
style 24309338 fill: lightgray,stroke: #333,stroke-width: 4px
4fd2a78a --#19, 1 * 2--> a9927e68((1))
root((root)) --#20, 1 * 6--> 30bd713b((6))
30bd713b --#21, 0 * 3--> 82f6a912((6))
style 82f6a912 fill: lightgray,stroke: #333,stroke-width: 4px
30bd713b --#22, 1 * 3--> a1adc784((3))
style a1adc784 fill: lightgray,stroke: #333,stroke-width: 4px
30bd713b --#23, 2 * 3--> 2bd1ac23((0))
2bd1ac23 --#24, 0 * 2--> 9eccd897((0))
style 9eccd897 fill: lightgray,stroke: #333,stroke-width: 4px
Source
    static int n;
    static int[] values;
    static int[] amounts;
    static int capacity;
    static int[][] dp;
    static boolean[][] visited;
    static int INF = 0x3f3f3f3f;

    public static int f(int firstCoins, int capacity) {

        /* Base Case */
        if (visited[firstCoins][capacity] || firstCoins == 0) return dp[firstCoins][capacity];
        else visited[firstCoins][capacity] = true;

        /* Recursive Case */
        int value = values[firstCoins - 1];
        for (int k = 0; (k <= capacity / value) && (k <= amounts[firstCoins - 1]); k++) {
            // the following are the same
            // dp[firstCoins][capacity] = Math.min(f(firstCoins - 1, capacity), f(firstCoins - 1, capacity - (k * value)) + k);
            dp[firstCoins][capacity] = Math.min(dp[firstCoins - 1][capacity], f(firstCoins - 1, capacity - (k * value)) + k);
        }

        return dp[firstCoins][capacity];
    }

    public static int solve() {

        // define dp array
        dp = new int[values.length + 1][capacity + 1];
        visited = new boolean[values.length + 1][capacity + 1];

        // init
        for (int i = 0; i <= values.length; i++) {
            for (int j = 0; j <= capacity; j++) {
                dp[i][j] = INF;
            }
        }

        for (int i = 0; i <= values.length; i++) {
            dp[i][0] = 0;
        }
        for (int j = 1; j <= capacity; j++) {
            dp[0][j] = INF;
        }

        // dp
        int ans = f(values.length, capacity);
        return ans == INF ? -1 : ans;
    }

    public static void main(String[] args) {
        for (Scanner scanner : judger) {
            n = scanner.nextInt();
            values = new int[n];
            amounts = new int[n];
            for (int i = 0; i < n; i++) {
                int value = scanner.nextInt();
                int amount = scanner.nextInt();
                values[i] = value;
                amounts[i] = amount;
            }
            capacity = scanner.nextInt();
            judger.manuallyStartTimer();
            System.out.println(solve());
            judger.manuallyStopTimer();
        }
    }
Benchmark
-----------------------------------------------------
Current Case: COINS0.in & COINS0.out
Expected  Input: [10, 1 0, 2 12, 5 180, 10 0, 20 109, 50 126, 100 192, 200 107, 500 47, 1000 20, 14758]
Expected Output: [21]
Your     Output: [21]
Time Cost: 8.383200 ms (8383200 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS1.in & COINS1.out
Expected  Input: [10, 1 0, 2 12, 5 180, 10 0, 20 109, 50 126, 100 192, 200 107, 500 47, 1000 20, 14758]
Expected Output: [21]
Your     Output: [21]
Time Cost: 5.690600 ms (5690600 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS2.in & COINS2.out
Expected  Input: [10, 1 0, 2 45, 5 0, 10 148, 20 145, 50 136, 100 181, 200 17, 500 172, 1000 152, 16834]
Expected Output: [23]
Your     Output: [23]
Time Cost: 6.921800 ms (6921800 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS3.in & COINS3.out
Expected  Input: [10, 1 0, 2 22, 5 0, 10 27, 20 52, 50 192, 100 164, 200 110, 500 62, 1000 98, 17397]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 1.721700 ms (1721700 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS4.in & COINS4.out
Expected  Input: [10, 1 0, 2 99, 5 173, 10 11, 20 54, 50 101, 100 6, 200 44, 500 15, 1000 126, 12810]
Expected Output: [16]
Your     Output: [16]
Time Cost: 4.294700 ms (4294700 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS5.in & COINS5.out
Expected  Input: [10, 1 0, 2 133, 5 6, 10 137, 20 196, 50 198, 100 176, 200 0, 500 168, 1000 94, 2253]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 1.258100 ms (1258100 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS6.in & COINS6.out
Expected  Input: [10, 1 0, 2 0, 5 3, 10 131, 20 24, 50 78, 100 66, 200 84, 500 147, 1000 152, 16423]
Expected Output: [-1]
Your     Output: [-1]
Time Cost: 2.296300 ms (2296300 ns)
Accepted.
-----------------------------------------------------
Current Case: COINS7.in & COINS7.out
Expected  Input: [3, 1 1, 2 2, 3 3, 11]
Expected Output: [4]
Your     Output: [4]
Time Cost: 0.092600 ms (92600 ns)
Accepted.
-----------------------------------------------------
Result Statistics: √ √ √ √ √ √ √ √

Recursive Method (4-Dimension)

Diagram
Expected  Input: [3, 2 3, 3 3, 6 1, 12]
Expected Output: [3]
graph TD;
root((root)) --#36, 0 * 6--> a7411865((12))
a7411865 --#37, 0 * 3--> 45b1eb92((12))
45b1eb92 --#38, 0 * 2--> 23c84bd8((12))
style 23c84bd8 fill: lightgray,stroke: #333,stroke-width: 4px
45b1eb92 --#39, 1 * 2--> 3a989a55((10))
style 3a989a55 fill: lightgray,stroke: #333,stroke-width: 4px
45b1eb92 --#40, 2 * 2--> 01f72111((8))
style 01f72111 fill: lightgray,stroke: #333,stroke-width: 4px
45b1eb92 --#41, 3 * 2--> bf018faf((6))
style bf018faf fill: lightgray,stroke: #333,stroke-width: 4px
a7411865 --#42, 1 * 3--> e48ee7e2((9))
e48ee7e2 --#43, 0 * 2--> 4edc439b((9))
style 4edc439b fill: lightgray,stroke: #333,stroke-width: 4px
e48ee7e2 --#44, 1 * 2--> f92a6278((7))
style f92a6278 fill: lightgray,stroke: #333,stroke-width: 4px
e48ee7e2 --#45, 2 * 2--> 1b25d26a((5))
style 1b25d26a fill: lightgray,stroke: #333,stroke-width: 4px
e48ee7e2 --#46, 3 * 2--> 39611a30((3))
style 39611a30 fill: lightgray,stroke: #333,stroke-width: 4px
a7411865 --#47, 2 * 3--> 0abad9d3((6))
0abad9d3 --#48, 0 * 2--> ba8ca012((6))
style ba8ca012 fill: lightgray,stroke: #333,stroke-width: 4px
0abad9d3 --#49, 1 * 2--> 0475bb15((4))
style 0475bb15 fill: lightgray,stroke: #333,stroke-width: 4px
0abad9d3 --#50, 2 * 2--> ea8374c3((2))
style ea8374c3 fill: lightgray,stroke: #333,stroke-width: 4px
0abad9d3 --#51, 3 * 2--> eeff9ef2((0))
style eeff9ef2 fill: lightgray,stroke: #333,stroke-width: 4px
a7411865 --#52, 3 * 3--> fbb80b24((3))
fbb80b24 --#53, 0 * 2--> a96a30bc((3))
style a96a30bc fill: lightgray,stroke: #333,stroke-width: 4px
fbb80b24 --#54, 1 * 2--> fc4ee4be((1))
style fc4ee4be fill: lightgray,stroke: #333,stroke-width: 4px
root((root)) --#55, 1 * 6--> 8c399954((6))
8c399954 --#56, 0 * 3--> 59fdd542((6))
59fdd542 --#57, 0 * 2--> 49d33747((6))
style 49d33747 fill: lightgray,stroke: #333,stroke-width: 4px
59fdd542 --#58, 1 * 2--> 8d975ef6((4))
style 8d975ef6 fill: lightgray,stroke: #333,stroke-width: 4px
59fdd542 --#59, 2 * 2--> 89d23054((2))
style 89d23054 fill: lightgray,stroke: #333,stroke-width: 4px
59fdd542 --#60, 3 * 2--> 1ec22271((0))
style 1ec22271 fill: lightgray,stroke: #333,stroke-width: 4px
8c399954 --#61, 1 * 3--> 4de3015f((3))
4de3015f --#62, 0 * 2--> 010c58d1((3))
style 010c58d1 fill: lightgray,stroke: #333,stroke-width: 4px
4de3015f --#63, 1 * 2--> 951f5029((1))
style 951f5029 fill: lightgray,stroke: #333,stroke-width: 4px
8c399954 --#64, 2 * 3--> ce3992c9((0))
style ce3992c9 fill: lightgray,stroke: #333,stroke-width: 4px
Source
    static int n;
    static int[] values;
    static int[] amounts;
    static int capacity;
    static int INF = 0x3f3f3f3f;

    public static class Memo {
        private static final ArrayList<Memo> memo = new ArrayList<>();
        public int firstCoins;
        public int capacity;
        public int[] amounts;
        public int value;
        public boolean visited;

        public Memo(int firstCoins, int capacity, int[] amounts, int value, boolean visited) {
            this.firstCoins = firstCoins;
            this.capacity = capacity;
            this.amounts = amounts;
            this.value = value;
            this.visited = visited;
        }

        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (o == null || getClass() != o.getClass()) return false;

            Memo memo = (Memo) o;
            if (firstCoins != memo.firstCoins) return false;
            if (capacity != memo.capacity) return false;
            return Arrays.equals(amounts, memo.amounts);
        }

        public static void resetMemo() {
            memo.clear();
        }

        public static void set(int firstCoins, int capacity, int[] amounts, int value, boolean visited) {
            int index = memo.indexOf(new Memo(firstCoins, capacity, amounts, value, visited));
            if (index == -1) {
                memo.add(new Memo(firstCoins, capacity, amounts, value, visited));
            } else {
                memo.set(index, new Memo(firstCoins, capacity, amounts, value, visited));
            }
        }

        public static Memo MEMO_ZERO = new Memo(0, 0, null, 0, true);
        public static Memo MEMO_INF = new Memo(0, 0, null, INF, true);

        public static Memo get(int firstCoins, int capacity, int[] amounts) {

            /* Special cases */
            if (capacity == 0) return MEMO_ZERO;
            else if (firstCoins == 0) return MEMO_INF;

            /* Normal cases */
            int index = memo.indexOf(new Memo(firstCoins, capacity, amounts, -1, false));
            if (index == -1) {
                Memo temp = new Memo(firstCoins, capacity, amounts, INF, false);
                memo.add(temp);
                return temp;
            } else return memo.get(index);
        }

    }

    public static int f(int firstCoins, int capacity, int[] amounts) {

        /* Base Case */
        if (Memo.get(firstCoins, capacity, amounts).visited) {
            return Memo.get(firstCoins, capacity, amounts).value;
        }

        /* Recursive Case */
        int value = values[firstCoins - 1];
        for (int k = 0; (k <= capacity / value) && (k <= amounts[firstCoins - 1]); k++) {
            // choice 1
            int do_not_use_current_type_of_coin = Memo.get(firstCoins - 1, capacity, amounts).value;

            // choice 2
            int[] amounts_clone = amounts.clone();
            amounts_clone[firstCoins - 1] -= k;
            int use_current_type_of_coin = f(firstCoins - 1, capacity - (k * value), amounts_clone) + k;

            // optimal choice
            Memo.set(firstCoins, capacity, amounts, Math.min(do_not_use_current_type_of_coin, use_current_type_of_coin), true);
        }

        return Memo.get(firstCoins, capacity, amounts).value;
    }

    public static int solve() {

        // define dp array
        Memo.resetMemo();

        // dp
        int ans = f(values.length, capacity, amounts);
        return ans == INF ? -1 : ans;
    }

    public static void main(String[] args) {
        for (Scanner scanner : judger) {
            n = scanner.nextInt();
            values = new int[n];
            amounts = new int[n];
            for (int i = 0; i < n; i++) {
                int value = scanner.nextInt();
                int amount = scanner.nextInt();
                values[i] = value;
                amounts[i] = amount;
            }
            capacity = scanner.nextInt();
            judger.manuallyStartTimer();
            System.out.println(solve());
            judger.manuallyStopTimer();
        }
    }
Benchmark
Recursive Method with 4-Dimension
-----------------------------------------------------
Current Case: COINS7.in & COINS7.out
Expected  Input: [3, 1 1, 2 2, 3 3, 11]
Expected Output: [4]
Your     Output: [4]
Time Cost: 1.000600 ms (1000600 ns)
Accepted
-----------------------------------------------------
Current Case: COINS8.in & COINS8.out
Expected  Input: [3, 2 3, 3 3, 6 1, 12]
Expected Output: [3]
Your     Output: [3]
Time Cost: 0.242400 ms (242400 ns)
Accepted
-----------------------------------------------------
Current Case: COINS9.in & COINS9.out
Expected  Input: [9, 1 1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 60]
Expected Output: [7]
Your     Output: [7]
Time Cost: 17775.069700 ms (17775069700 ns)
Accepted
-----------------------------------------------------
Result Statistics: √ √ √
Recursive Method with 2-Dimention
-----------------------------------------------------
Current Case: COINS7.in & COINS7.out
Expected  Input: [3, 1 1, 2 2, 3 3, 11]
Expected Output: [4]
Your     Output: [4]
Time Cost: 8.181900 ms (8181900 ns)
Accepted
-----------------------------------------------------
Current Case: COINS8.in & COINS8.out
Expected  Input: [3, 2 3, 3 3, 6 1, 12]
Expected Output: [3]
Your     Output: [3]
Time Cost: 3.047300 ms (3047300 ns)
Accepted
-----------------------------------------------------
Current Case: COINS9.in & COINS9.out
Expected  Input: [9, 1 1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 60]
Expected Output: [7]
Your     Output: [7]
Time Cost: 69.721200 ms (69721200 ns)
Accepted
-----------------------------------------------------
Result Statistics: √ √ √

Pebble Merging Problem

Description

在一個圓形操場的四周擺放著 n 堆石子。現要將石子有次序地合並成一堆。規定每次只 能選相鄰的 2 堆石子合並成新的一堆,並將新的一堆石子數記為該次合並的得分。試設計一 個算法,計算出將 n 堆石子合並成一堆的最小得分和最大得分。

Input

由文件 input.txt 提供輸入數據。文件的第 1 行是正整數 n,1≤n≤100,表示有 n 堆石子。 第二行有 n 個數,分別表示每堆石子的個數。

Output

程序運行結束時,將計算結果輸出到文件 output.txt 中。文件的第 1 行中的數是最小得 分;第 2 行中的數是最大得分;。

Sample

輸入文件示例

input.txt

4

4 4 5 9

輸出文件示例

output.txt

43

54

Analysis

我們只考慮最小得分,因為 最小得分最大得分對稱的

然後,由於每次只能合並相鄰的兩堆石子,所以我們不妨將所有石子從左到右排成線性的一堆石子


Establish the Recursive Equation

我們不妨考慮 最終 (End) 會發生什麽: 所有的n堆石子 被合並為 1堆石子

最後一步 (The Final Step)時,我們會將2堆石子合並為1堆石子

顯然,我們需要為此次合並操作付出的代價為左邊那一堆石子的重量 + 右邊那一堆石子的重量

此外,我們還要加上為了獲得左邊那堆石子的所付出的代價為了獲得右邊那堆石子所付出的代價

註意,這裏面已經隱含了遞歸,這相當於,我們在線性排列的一堆石子裏:在第i堆石子第j堆石子之中,插入了分隔板,使之形成左邊那堆石子(第i堆石子~第k堆石子)右邊那堆石子 (第k+1堆石子~第j堆石子)

因而,我們可以寫出遞推方程 $$ \bt{Just take the final step into considetaion} \ dp[i][j] = \lb { & \r{dp[i][k]+dp[k+1][j]} \g{+ (sum[j] - sum[i])},&(\t{we find a better plan !}) \ & dp[i][j],&(\t{not better than current plan}) } $$

其中$sum$表示 前綴和


Determine the order of computation (Iterative Method)

為了 保證求解原問題時,該原問題所需的所有子問題已經求解完畢,則我們需要 確定合適的運算順序

首先,我們考慮下合並過程剛開始的時候:i=1,j=n 即表示考慮 從第1堆石子第n堆石子的最少合並代價,

假設最終這個最優解在第k堆石子處分隔開

即可得到2個子問題從第1堆石子到第k堆石子的最少合並代價從第k+1堆石子到第n堆石子的最少合並代價

不妨繼續考慮從第1堆石子到第k堆石子的最少合並代價,我們會發現這裏仍然需要 遞歸 ,直到基本情況

基本情況就是只有1堆石子的情況

所以,通過分析遞歸過程得出的基本情況,我們反過來基本情況逐步建立叠代形式的運算順序:即我們從只有1堆石子的最少合並代價開始計算,然後計算只有2堆石子的最少合並代價,...,計算只有n堆石子的最少合並代價

於是,我們確定了第一個運算順序:考慮只有[1, n]堆石子的最少合並代價

接下來,我們需要枚舉 只有len堆石子到底是 哪len堆石子 ,由於已經確定了石子的堆數(即區間長度 len,因為所有石子堆是線性排列的)

則我們只需要確定起始點即可,於是,我們確定了第二個運算順序:只有指定堆的石子的起始點為[0,n - len]

而接下來,我們僅需要對指定長度的石子堆進行確定分割點k即可。

而且由於我們前面的運算順序中,第一個運算順序為計算石子堆的長度從1~n

因而,我們在第三個運算順序確立分割點時,可以保證 更小區間長度的石子堆的最小合並代價已經計算好的


綜上,我們確立好了運算順序:

  1. 第一個運算順序:區間長度(連續的len個石子堆)
  2. 第二個運算順序:區間的起始點(從第i個石子堆開始的連續len個石子堆)
  3. 第三個運算順序:分割點(在這個選定的 石子堆序列 中,選定 分割點,將這個 石子堆序列 分為 左右兩個部分

Simply use memo (Recursive Method)

在已經得出了 遞推方程的情況下,如果不希望 確定運算順序,則可以直接使用 遞歸方法

遞歸方法可以非常自然地 描述 遞推關系

在已知 最優子結構的情況下,動態規劃 (Dynamic Programming)暴力法 (Brute-Force)最大的區別是:

動態規劃利用了 重疊子問題 (Overlapping Subproblem)性質。

遞歸形式的動態規劃 = 遞歸形式的暴力法 + 備忘錄機製

如果一開始就打算使用遞歸形式,那麽運算順序就沒有那麽重要了,因為我們總可以在需要的時候臨時計算,然後利用備忘錄機製(這很重要,否則會導致重復地求解相同的子問題)來保存某個子問題的計算結果即可。

但相比於 叠代形式的動態規劃產生整顆子問題空間樹 (無論某些子問題是否真的被用到)遞歸形式的動態規劃則只會 生成那些確實需要用到的子問題

但是,一般來說,叠代形式的動態規劃卻會更加快速。

編譯器對於 叠代算法可以有更多的信息來進行 指令級優化

同時,叠代形式也可以避免過多的 過程調用的幀棧創建和銷毀的代價,以及獲得 更優的高速緩存命中率

但通過 遞歸形式產生的 子問題空間樹「殘缺的」,在只有 少量子問題重復出現的情況下,用 遞歸形式的動態規劃會更加高效。

Solution

Iterative Method

Diagram
Expected  Input: [4, 1 2 3333 2]
Expected Output: [6676, 10010]
i\j 0 1 2 3
0 0 3 3339 6676
1 1061109567 0 3335 6672
2 1061109567 1061109567 0 3335
3 1061109567 1061109567 1061109567 0
i\j 0 1 2 3
0 0 3 6671 10010
1 0 0 3335 6672
2 0 0 0 3335
3 0 0 0 0
Source
     public static Judger.Pair<Integer, Integer> solve(int n, int[] sum) {

        int[][] dp = new int[n][n];
        int min, max;

        // Min cost
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (i == j) dp[i][j] = 0;
                else dp[i][j] = 0x3f3f3f3f;
            }
        }

        for (int len = 1; len < n; len++) {
            for (int i = 0; i < (n - len); i++) {
                int j = i + len;
                for (int k = i; k < j; k++) {
                    dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k + 1][j] + (sum[j + 1] - sum[i]));
                }

            }
        }
        min = dp[0][n - 1];

        // Max Cost
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (i == j) dp[i][j] = 0;
                else dp[i][j] = 0;
            }
        }

        for (int len = 1; len < n; len++) {
            for (int i = 0; i < (n - len); i++) {
                int j = i + len;
                for (int k = i; k < j; k++) {
                    dp[i][j] = Math.max(dp[i][j], dp[i][k] + (dp[k + 1][j] + sum[j + 1] - sum[i]));
                }

            }
        }
        max = dp[0][n - 1];

        return new Judger.Pair<>(min, max);
    }

    public static void main(String[] args) {

        for (Scanner scanner : judger) {
            int n = scanner.nextInt();
            int[] a = new int[n];
            for (int i = 0; i < n; i++) {
                a[i] = scanner.nextInt();
            }

            // Pre-solve: partial sum
            int[] sum = new int[n + 1];
            sum[0] = 0;
            for (int i = 1; i < sum.length; i++) {
                sum[i] = sum[i - 1] + a[i - 1];
            }

            Judger.Pair<Integer, Integer> answer = solve(n, sum);
            System.out.printf("%d\n%d", answer.getKey(), answer.getValue());
        }
    }
Benchmark
-----------------------------------------------------
Current Case: MERGE0.in & MERGE0.out
Expected  Input: [37, 53 49 2 9 9 30 2 35 1 46 39 46 42 33 13 41 35 57 38 59 15 40 18 6 46 30 53 31 34 57 41 20 1 42 59 46 45 ]
Expected Output: [6186, 25130]
Your     Output: [6186, 25130]
Time Cost: 4.828800 ms (4828800 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE1.in & MERGE1.out
Expected  Input: [4, 1 2 3333 2]
Expected Output: [6676, 10010]
Your     Output: [6676, 10010]
Time Cost: 0.929800 ms (929800 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE2.in & MERGE2.out
Expected  Input: [7, 30 35 15 5 10 20 25]
Expected Output: [370, 580]
Your     Output: [370, 580]
Time Cost: 1.354100 ms (1354100 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE3.in & MERGE3.out
Expected  Input: [7, 3 4 5 6 7 8 9]
Expected Output: [116, 187]
Your     Output: [116, 187]
Time Cost: 1.063500 ms (1063500 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE4.in & MERGE4.out
Expected  Input: [30, 3 4 7 11 13 15 18 21 17 14 7 5 8 10 19 16 13 10 7 5 4 3 4 5 6 3 15 3 10 8 ]
Expected Output: [1342, 5318]
Your     Output: [1342, 5318]
Time Cost: 1.857000 ms (1857000 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE5.in & MERGE5.out
Expected  Input: [4, 1 3 15 2 ]
Expected Output: [42, 59]
Your     Output: [42, 59]
Time Cost: 0.901300 ms (901300 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE6.in & MERGE6.out
Expected  Input: [7, 1 7 6 12 3 15 2 ]
Expected Output: [129, 218]
Your     Output: [129, 218]
Time Cost: 1.066700 ms (1066700 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE7.in & MERGE7.out
Expected  Input: [5, 1 1 2 3333 2]
Expected Output: [6680, 13349]
Your     Output: [6680, 13349]
Time Cost: 0.969700 ms (969700 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE8.in & MERGE8.out
Expected  Input: [87, 14 27 48 9 8 14 9 29 25 14 8 30 37 37 4 4 3 6 39 40 19 30 22 37 25 17 41 41 7 5 4 3 10 33 12 28 13 18 42 16 16 33 34 45 16 24 15 38 37 28 36 21 27 30 44 33 6 24 20 6 3 27 33 4 46 42 34 46 14 35 36 25 33 8 12 47 18 7 49 16 3 5 43 28 35 5 33 ]
Expected Output: [12799, 96955]
Your     Output: [12799, 96955]
Time Cost: 6.057900 ms (6057900 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE9.in & MERGE9.out
Expected  Input: [20, 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 ]
Expected Output: [864, 2850]
Your     Output: [864, 2850]
Time Cost: 1.526400 ms (1526400 ns)
Accepted.
-----------------------------------------------------
Result Statistics: √ √ √ √ √ √ √ √ √ √

Recursive Method

Diagram
Expected  Input: [4, 1 2 3333 2]
Expected Output: [6676, 10010]
graph TD;
style db2871da fill: gray,stroke: #333,stroke-width: 4px
style 984401db fill: lightgreen,stroke: #333,stroke-width: 4px
style 108f3e6e fill: gray,stroke: #333,stroke-width: 4px
style d053e213 fill: lightgreen,stroke: #333,stroke-width: 4px
style 3a08e73b fill: gray,stroke: #333,stroke-width: 4px
style 905d2093 fill: gray,stroke: #333,stroke-width: 4px
d053e213 --#1L, 3333--> 3a08e73b((2..2</br>0))
d053e213 --#1R, 2--> 905d2093((3..3</br>0))
984401db --#2L, 2--> 108f3e6e((1..1</br>0))
984401db --#2R, 3335--> d053e213((2..3</br>3335))
style 9a62f0a0 fill: lightgreen,stroke: #333,stroke-width: 4px
style d33c7169 fill: gray,stroke: #333,stroke-width: 4px
style 64212337 fill: gray,stroke: #333,stroke-width: 4px
9a62f0a0 --#3L, 2--> d33c7169((1..1</br>0))
9a62f0a0 --#3R, 3333--> 64212337((2..2</br>0))
style c78fd6db fill: gray,stroke: #333,stroke-width: 4px
984401db --#4L, 3335--> 9a62f0a0((1..2</br>3335))
984401db --#4R, 2--> c78fd6db((3..3</br>0))
root((root)) --#5L, 1--> db2871da((0..0</br>0))
root((root)) --#5R, 3337--> 984401db((1..3</br>6672))
style 4361b325 fill: lightgreen,stroke: #333,stroke-width: 4px
style 1f5338ec fill: gray,stroke: #333,stroke-width: 4px
style c9c46067 fill: gray,stroke: #333,stroke-width: 4px
4361b325 --#6L, 1--> 1f5338ec((0..0</br>0))
4361b325 --#6R, 2--> c9c46067((1..1</br>0))
style 6b63e09f fill: lightgray,stroke: #333,stroke-width: 4px
root((root)) --#7L, 3--> 4361b325((0..1</br>3))
root((root)) --#7R, 3335--> 6b63e09f((2..3</br>3335))
style 4bd4d793 fill: lightgreen,stroke: #333,stroke-width: 4px
style 2c2b9065 fill: gray,stroke: #333,stroke-width: 4px
style 20a281ee fill: lightgray,stroke: #333,stroke-width: 4px
4bd4d793 --#8L, 1--> 2c2b9065((0..0</br>0))
4bd4d793 --#8R, 3335--> 20a281ee((1..2</br>3335))
style 42941b97 fill: lightgray,stroke: #333,stroke-width: 4px
style 7de997a1 fill: gray,stroke: #333,stroke-width: 4px
4bd4d793 --#9L, 3--> 42941b97((0..1</br>3))
4bd4d793 --#9R, 3333--> 7de997a1((2..2</br>0))
style 5565dbef fill: gray,stroke: #333,stroke-width: 4px
root((root)) --#10L, 3336--> 4bd4d793((0..2</br>3339))
root((root)) --#10R, 2--> 5565dbef((3..3</br>0))
style root fill: lightgreen,stroke: #333,stroke-width: 4px
root((0..3</br>6676))
graph TD;
style c39dfc51 fill: gray,stroke: #333,stroke-width: 4px
style 4b5075a2 fill: lightgreen,stroke: #333,stroke-width: 4px
style 9a8edd98 fill: gray,stroke: #333,stroke-width: 4px
style 77669c62 fill: lightgreen,stroke: #333,stroke-width: 4px
style 3525cd7d fill: gray,stroke: #333,stroke-width: 4px
style 27e0a4da fill: gray,stroke: #333,stroke-width: 4px
77669c62 --#11L, 3333--> 3525cd7d((2..2</br>0))
77669c62 --#11R, 2--> 27e0a4da((3..3</br>0))
4b5075a2 --#12L, 2--> 9a8edd98((1..1</br>0))
4b5075a2 --#12R, 3335--> 77669c62((2..3</br>3335))
style cad53082 fill: lightgreen,stroke: #333,stroke-width: 4px
style 5dec4f10 fill: gray,stroke: #333,stroke-width: 4px
style 57160f17 fill: gray,stroke: #333,stroke-width: 4px
cad53082 --#13L, 2--> 5dec4f10((1..1</br>0))
cad53082 --#13R, 3333--> 57160f17((2..2</br>0))
style 43d989e7 fill: gray,stroke: #333,stroke-width: 4px
4b5075a2 --#14L, 3335--> cad53082((1..2</br>3335))
4b5075a2 --#14R, 2--> 43d989e7((3..3</br>0))
root((root)) --#15L, 1--> c39dfc51((0..0</br>0))
root((root)) --#15R, 3337--> 4b5075a2((1..3</br>6672))
style 59f09ba9 fill: lightgreen,stroke: #333,stroke-width: 4px
style ce2df958 fill: gray,stroke: #333,stroke-width: 4px
style 3b1bc123 fill: gray,stroke: #333,stroke-width: 4px
59f09ba9 --#16L, 1--> ce2df958((0..0</br>0))
59f09ba9 --#16R, 2--> 3b1bc123((1..1</br>0))
style 468ac0d5 fill: lightgray,stroke: #333,stroke-width: 4px
root((root)) --#17L, 3--> 59f09ba9((0..1</br>3))
root((root)) --#17R, 3335--> 468ac0d5((2..3</br>3335))
style 41c67309 fill: lightgreen,stroke: #333,stroke-width: 4px
style 62aca470 fill: gray,stroke: #333,stroke-width: 4px
style b51c743b fill: lightgray,stroke: #333,stroke-width: 4px
41c67309 --#18L, 1--> 62aca470((0..0</br>0))
41c67309 --#18R, 3335--> b51c743b((1..2</br>3335))
style 675fda1c fill: lightgray,stroke: #333,stroke-width: 4px
style 7631db1b fill: gray,stroke: #333,stroke-width: 4px
41c67309 --#19L, 3--> 675fda1c((0..1</br>3))
41c67309 --#19R, 3333--> 7631db1b((2..2</br>0))
style c18be7c1 fill: gray,stroke: #333,stroke-width: 4px
root((root)) --#20L, 3336--> 41c67309((0..2</br>6671))
root((root)) --#20R, 2--> c18be7c1((3..3</br>0))
root((0..3</br>10010))
style root fill: lightgreen,stroke: #333,stroke-width: 4px
Source
    static int n;
    static int[] sum;
    static int[][] dp;
    static int INF = 0x3f3f3f3f;

    public static int m(int i, int j) {

        /* Base Case */
        if (dp[i][j] != INF) {
            return dp[i][j];
        }

        /* Recursive Case */
        for (int k = i; k < j; k++) {
            // it's also correct: dp[i][j] = Math.min(m(i, j), m(i, k) + m(k + 1, j) + (sum[j + 1] - sum[i]));
            dp[i][j] = Math.min(dp[i][j], m(i, k) + m(k + 1, j) + (sum[j + 1] - sum[i]));
        }
        return dp[i][j];
    }

    public static int M(int i, int j) {

        /* Base Case */
        if (dp[i][j] != -INF) {
            return dp[i][j];
        }

        /* Recursive Case */
        for (int k = i; k < j; k++) {
            dp[i][j] = Math.max(dp[i][j], M(i, k) + M(k + 1, j) + (sum[j + 1] - sum[i]));
        }
        return dp[i][j];
    }

    public static Judger.Pair<Integer, Integer> solve() {

        dp = new int[n][n];
        int min, max;

        /* Min */
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j] = INF;
            }
        }
        for (int i = 0; i < n; i++) {
            dp[i][i] = 0;
        }
        min = m(0, n - 1);

        /* Max */
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j] = -INF;
            }
        }
        for (int i = 0; i < n; i++) {
            dp[i][i] = 0;
        }
        max = M(0, n - 1);

        return new Judger.Pair<>(min, max);
    }

    public static void main(String[] args) {

        for (Scanner scanner : judger) {
            n = scanner.nextInt();
            int[] a = new int[n];
            for (int i = 0; i < n; i++) {
                a[i] = scanner.nextInt();
            }

            // Pre-solve: partial sum
            sum = new int[n + 1];
            sum[0] = 0;
            for (int i = 1; i < sum.length; i++) {
                sum[i] = sum[i - 1] + a[i - 1];
            }

            Judger.Pair<Integer, Integer> answer = solve();
            System.out.printf("%d\n%d", answer.getKey(), answer.getValue());
        }
    }
Benchmark
-----------------------------------------------------
Current Case: MERGE0.in & MERGE0.out
Expected  Input: [37, 53 49 2 9 9 30 2 35 1 46 39 46 42 33 13 41 35 57 38 59 15 40 18 6 46 30 53 31 34 57 41 20 1 42 59 46 45 ]
Expected Output: [6186, 25130]
Your     Output: [6186, 25130]
Time Cost: 4.601200 ms (4601200 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE1.in & MERGE1.out
Expected  Input: [4, 1 2 3333 2]
Expected Output: [6676, 10010]
Your     Output: [6676, 10010]
Time Cost: 0.888000 ms (888000 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE2.in & MERGE2.out
Expected  Input: [7, 30 35 15 5 10 20 25]
Expected Output: [370, 580]
Your     Output: [370, 580]
Time Cost: 1.097400 ms (1097400 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE3.in & MERGE3.out
Expected  Input: [7, 3 4 5 6 7 8 9]
Expected Output: [116, 187]
Your     Output: [116, 187]
Time Cost: 1.463500 ms (1463500 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE4.in & MERGE4.out
Expected  Input: [30, 3 4 7 11 13 15 18 21 17 14 7 5 8 10 19 16 13 10 7 5 4 3 4 5 6 3 15 3 10 8 ]
Expected Output: [1342, 5318]
Your     Output: [1342, 5318]
Time Cost: 1.491700 ms (1491700 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE5.in & MERGE5.out
Expected  Input: [4, 1 3 15 2 ]
Expected Output: [42, 59]
Your     Output: [42, 59]
Time Cost: 0.847000 ms (847000 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE6.in & MERGE6.out
Expected  Input: [7, 1 7 6 12 3 15 2 ]
Expected Output: [129, 218]
Your     Output: [129, 218]
Time Cost: 0.783500 ms (783500 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE7.in & MERGE7.out
Expected  Input: [5, 1 1 2 3333 2]
Expected Output: [6680, 13349]
Your     Output: [6680, 13349]
Time Cost: 0.795700 ms (795700 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE8.in & MERGE8.out
Expected  Input: [87, 14 27 48 9 8 14 9 29 25 14 8 30 37 37 4 4 3 6 39 40 19 30 22 37 25 17 41 41 7 5 4 3 10 33 12 28 13 18 42 16 16 33 34 45 16 24 15 38 37 28 36 21 27 30 44 33 6 24 20 6 3 27 33 4 46 42 34 46 14 35 36 25 33 8 12 47 18 7 49 16 3 5 43 28 35 5 33 ]
Expected Output: [12799, 96955]
Your     Output: [12799, 96955]
Time Cost: 3.839300 ms (3839300 ns)
Accepted.
-----------------------------------------------------
Current Case: MERGE9.in & MERGE9.out
Expected  Input: [20, 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 ]
Expected Output: [864, 2850]
Your     Output: [864, 2850]
Time Cost: 1.105300 ms (1105300 ns)
Accepted.
-----------------------------------------------------
Result Statistics: √ √ √ √ √ √ √ √ √ √