版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

仓库源文站点原文


title: 随笔 - Laplace算子的旋转不变性 categories:


一道练习题

<!-- more -->

{% note success no-icon %}

<a id="th">定理</a> (Laplace 算子的旋转不变性)

$$ \Delta_x=\Delta_y $$

其中


Proof 显然

$$ yi=\sum{j=1}^no_{ij}x_j,\ \forall i=1..n $$

故我们有

$$ \frac{\partial}{\partial xi}=\sum{j=1}^n\frac{\partial}{\partial y_j}\frac{\partial y_j}{\partial xi}=\sum{j=1}^no_{ji}\frac{\partial}{\partial y_j} $$

考虑 Hessian 矩阵

$$ \nabla^2_x=\left(\frac{\partial^2}{\partial x_j\partial xi}\right){n\times n}=\left(\sum{l=1}^n\sum{k=1}^no{lj}o{ki}\frac{\partial^2}{\partial y_l\partial yk}\right){n\times n} $$

$$ \begin{aligned} \Delta_x&=\operatorname{tr}(\nabla^2x)\ &=\sum{l=1}^n\sum{k=1}^n\left(\sum{i=1}^no{li}o{ki}\right)\frac{\partial^2}{\partial y_l\partial yk}\ &=\sum{l=1}^n\sum{k=1}^n\delta{kl}\frac{\partial^2}{\partial y_l\partial yk}\ &=\sum{k=1}^n\frac{\partial^2}{\partial y_k^2}\ &=\Delta_y \end{aligned} $$

{% endnote %}