版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

仓库源文站点原文


title: "题解 - [AtCoder ARC110D] Binomial Coefficient is Fun" categories:


题目链接

<!-- more -->

原始题面

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 600 points

Problem Statement

We have a sequence $A$ of $N$ non-negative integers

Compute the sum of $\prod_{i=1}^N\binom{B_i}{A_i}$ over all sequences $B$ of $N$ non-negative integers whose sum is at most $M$, and print it modulo ($10^9+7$)

Here, $\binom{B_i}{A_i}$ , the binomial coefficient, denotes the number of ways to choose $A_i$ objects from $B_i$ objects, and is 0 when $B_i<A_i$

Constraints

Input

Input is given from Standard Input in the following format:

$N\ M\A_1\ A_2\ ...\ A_N$

Output

Print the sum of $\prod_{i=1}^N\binom{B_i}{A_i}$, modulo ($10^9+7$)

Sample Input 1

3 5
1 2 1

Sample Output 1

8

There are four sequences B such that $\prod_{i=1}^N\binom{B_i}{A_i}$ is at least 1:

The sum of these is $1+2+3+2=8$

Sample Input 2

10 998244353
31 41 59 26 53 58 97 93 23 84

Sample Output 2

642612171

题意简述

给定正整数 $n,m$ 和 $a_1,a_2,\dots,a_n$, 求

$$ \sum_{\begin{smallmatrix} b_1,b_2,...,bn>0\\ \sum{i=1}^nbi\leqslant m \end{smallmatrix}}\prod{i=1}^n\binom{b_i}{a_i} $$

解题思路

不难发现该问题等价于如下问题

给出 $m$ 个相同的小球和 $n$ 个盒子, 盒子编号为 $1,2,...,n$, 将小球放入盒子中, 要求第 $i$ 个盒子至少放 $a_i$ 个球, 接下来给每个盒子中的小球标号, 并分别在第 $i$ 个盒子里取出 $a_i$ 种, 问一共有多少种取法

先取出 $\sum_{i=1}^na_i$ 个球放进盒子里, 此时问题可转化为

将 $m-\sum_{i=1}^nai$ 个相同的球放入 $n+\sum{i=1}^na_i$ 个有编号盒子(允许盒子为空)的方案数 (考虑插空法易得)

所以最终答案即为

$$ {m+n\choose m-\sum_{i=1}^nai}={m+n\choose\sum{i=1}^na_i+n} $$