仓库源文站点原文


title: '揭秘 0.1 + 0.2 != 0.3' description: 在采用 IEEE754 浮点数标准的语言中,0.1 + 0.2 都不会等于 0.3,但是 0.2 + 0.3 却等于 0.5,这是为何?想必这类问题也困扰着不少程序员。 warning: true date: 2016-09-28 23:05:23 categories:


"0.1 + 0.2 = ?",这道题如果给小学生,他会立马告诉你答案是 0.3,但是交给一些程序去计算,结果就不是那么简单了。

math<!--<source src="http://ww4.sinaimg.cn/large/6c0378f8gw1f89pd8hm96j20p00dwacm.jpg">-->

<!-- more -->

事实上,不仅仅是 JS,在其他采用 IEEE754 浮点数标准的语言中,0.1 + 0.2 都不会等于 0.3,但是 0.2 + 0.3 却等于 0.5,这是为何?想必这类问题也困扰着不少程序员。

IEEE754 浮点数的演算

我们知道,科学计数法中 30000 可以写成 3x10<sup>4</sup>,以 10 为底数 4 为指数的科学计数法。在 IEEE754 标准中是比较类似的,只不过它是二进制数,底数也为 2。

IEEE 754 中最常用的浮点数值表示法是:单精确度(32位)和双精确度(64位),JavaScript 采用的是后者。举个例子,十进制数 150,使用双精度浮点数表示法,表示如下:

// D 表示十进制,B 表示二进制
150D = 2^8 * 0.1001011B // 后面省略了 46 个 0

可以通过短除法计算:

   150   余数位
÷    2
---------------
    75     0   
÷    2
---------------
    37     1
÷    2
---------------
    18     1
÷    2
---------------
     9     0
÷    2
---------------
     4     1
÷    2
---------------
     2     0
÷    2
---------------
     1     0
÷    2
---------------
     0     1

最后一个余数为高位值,于是拿到 150 对应的二进制数位 1001011,也就等于 2^8 * 0.1001011

上面是整数的表示法,而小数的表示法采用的是乘二取整,如 0.1,它的二进制表示为:

// (0011) 表示循环
0.1D = 2^-3 * 0.110011(0011)

其演算方法如下:

    0.1   整数位
×     2
---------------
    0.2     0 
×     2
---------------
    0.4     0   * ↓
×     2
---------------
    0.8     0 
×     2
---------------
    1.6     1 
×     2
---------------
    1.2     1
×     2
---------------
    0.4     0   * ↑
             (0011循环)

与整数不同的是,第一个计算得到的整数位为最高位,故 0.1 对应的二进制数为 0.000110011(0011),也就等于 2^-3 0.1100110011(0011)

如果一个数既包含整数部分,又包含小数部分,其表示法的计算,需要分拆为整数和小数两部分,然后相加得到结果。

IEEE754 浮点数精度丢失

IEEE754 浮点数表示法的数据格式如下图:

// 下图采用大端表示,高位在左,低位在右。

sign  exponent         fraction
+---+----------+---------------------+
| 1 |   2~12   |         13~64       |
+---+----------+---------------------+

从上面小数的乘二取整演算中可以看到,有些小数对应的二进制数是无法写全的,比如 0.1,而 fraction 尾数部分有要求,只允许 52 位,超过部分进一舍零。

那么,我们就可以得到:

0.1D 
= 2^-4 * 1.10011(0011)B
= 2^-4 * 1.10011(0011 repeat 12 times)0011B // ← 最后一位为 1,进 1
= 2^-4 * 1.10011(0011 repeat 12 times)010B

揭秘 0.1 + 0.2

根据上面我们了解到的知识,我们可以很容易算出这些值:

0.1D = 2^-4 * 1.1001100110011001100110011001100110011001100110011010B
0.2D = 2^-3 * 1.1001100110011001100110011001100110011001100110011010B
0.3D = 2^-2 * 1.0011001100110011001100110011001100110011001100110011B

0.1 + 0.2 时,先将两者指数统一为 -3,故 0.1 小数点向左移一位,于是:

   0.1100110011001100110011001100110011001100110011001101B
+  1.1001100110011001100110011001100110011001100110011010B
------------------------------------------------------------
= 10.0110011001100110011001100110011001100110011001100111B

得到的二进制数为:

10.0110011001100110011001100110011001100110011001100111B

小数点往左移一位使得整数部分为 1,此时尾数部分为 53 位,进一舍零,于是得到最后的值是:

2^-2 * 1.0011001100110011001100110011001100110011001100110100

这个值转化成真值,结果为:0.30000000000000004。那么 0.1 + 0.2 = 0.30000000000000004 的推演到这里就结束了。

相关验证

毕竟咱们手动计算可能存在笔误,可以通过一个叫做 double-bits 的 npm 进行推演,我写了一个小 demo,感兴趣的可以玩耍下:

const db = require('double-bits');
const pad = require('pad');

// [lo, hi] where lo is a 32 bit integer and hi is a 20 bit integer.
const base2Str = (n) => {
  const f = db.fraction(n);
  const s = db.sign(n) ? '-' : '';
  const e = `2^${db.exponent(n) + 1}`;
  const t = `0.${pad(f[1].toString(2), 20, '0')}${pad(f[0].toString(2), 32, '0')}`;
  return `${s}${e} * ${t}`;
};

console.log(base2Str(0.1).toString(2));
console.log(base2Str(0.2).toString(2));
console.log(base2Str(0.3).toString(2));
console.log(base2Str(1.2).toString(2));

上面输出结果为:

2^-3 * 0.11001100110011001100110011001100110011001100110011010
2^-2 * 0.11001100110011001100110011001100110011001100110011010
2^-1 * 0.10011001100110011001111001100110011001100110011001100
2^1 * 0.10011001100110011001111001100110011001100110011001100

最后

为了按照计算机的思维,IEEE754 的标准来计算 0.1 + 0.2,又重新复习了一遍大学计算机基础的知识,原码、反码、补码,以及除二取余、乘二取整计算法,最后能够推演出来,也算是一个胜利吧~

更多阅读


题图:math by Roman Mager

笔耕不辍,欢迎关注微信公众号小胡子哥(barretlee_com),分享生活,分享技术,我在那里等你。